Derivata intai
IV.1 Calculam derivata si stabilim domeniul de derivabilitate. In general, domeniul maxim de definitie , domeniul de derivabilitate cu exceptia:
IV.1.1 !!!
IV.1.2 !!!
IV.1.3 !!!
IV.2 Semitangente la grafic
IV.2.1 domeniului de derivabilitate => si este finita
y-f(x0)=f'(x0)(x-x0) tangenta la Gf in punctul M0(x0,f(x0))
caz particular f'(x0)= 0 => tangenta la Gf in punctul M0(x0,f(x0)) este orizontala
IV.2.2 tangenta la Gf este verticala
IV.2.3 si cel putin una este finita =>
Gf are semitangenta la stanga d1: y-f(x0)=f's(x0)(x-x0) si
Gf are semitangenta la dreapta d2: y-f(x0)=f'd(x0)(x-x0).
M0(x0,f(x0)) punct unghiular.
IV.2.4 ambele infinite => M0(x0,f(x0)) punct de intoarcere.
IV.3 Punctele critice
f'(x)=0
IV.4 Intervalele in care derivata are semn constant
a) strict crescatoare pe I
b) strict descrescatoare pe I
IV.5 Puncte de extrem
M(x0,f(x0)) punct de maxim/minim
V. Studiul derivatei a doua
V.1 Se calculeaza derivata a doua
V.2 Se determina semnul derivatei a doua
+ convexa
concava
V.3 Punctele de inflexiune x0
f''(x0)=0
semne contrare la stanga si la dreapta lui x0