grafica de calcul - Determinarea caracteristicilor cinematice ale miscarii punctului



mecanica teoretica

Lucrarea grafica de calcul № 1

( C1 )

 

 



 

Tema: Determinarea caracteristicilor cinematice ale miscarii punctului.

V- 17

Cunoscand ecuatiile miscarii punctului M de gasit traiectoria miscarii

lui si pentru momentul de timp t de gasit pozitia punctului pe traiec- 24554dvn93kxm2k

torie, viteza, acceleratia, acceleratia tangentiala, acceleratia normala si

raza curburei traiectoriei in punctul dat.

Se da:

x= 7sin2(πt/6)-5 cm vx554d4293kxxm

y=-7cos2(πt/6) cm

t=1 s

__________________

  1. y=f(x);

M1;

  1. v1;

  2. a1;

  3. a1τ;

  4. a1n;

  5. ρ1;

Rezolvare:

1.Ecuatiile x= 7sin2(πt/6)-5 si y=-7cos2(πt/6) (1) pot fi privite ca ecuatiile parametrice a traiectoriei punctului . Pentru a primi ecuatia traiectoriei punctului M1 in coordonate exclu-

dem timpul t din (1) .

x+5=7sin2(πt/6) , -y=7cos2(πt/6)

Adunand parte cu parte ecutiile obtinem : x+5-y=7 => y=x-2 (2) −traiectoria.

Deoarece functiile sin2(x) si cos2(x) primesc valorile pe intervalul [0;1] => din (1) ca traiectoria miscarii punctului M1 este un segment marginit de punctele cu coordonatele (-5;-7) si (2;0).

Pozitia punctului M1 pe traiectorie in timpul t=1 s est determinata de coordonatele

M1(-13/4;-21/4);

2. Pentru a afla modulul vitezei calculam componentele ei vx si vy

Vx=dx/dt => Vx=7*2sin(πt/6)*cos(πt/6)*π/6=(7π/6)*sin(πt/3) cm/s; (3)

Vy=dy/dt => Vy=-7*2cos(πt/6)* (-sin(πt/6))*π/6=(7π/6)*sin(πt/3) cm/s; (4)

Din (3) si (4) => vx=vy.=> vx1=vy1=7π√3/12 cm/s;

V=√vx2+vy2=√(98π2/36)sin2(πt/3)=(7π√2/6)sin(πt/3) cm/s; (5)

Din (5) => V1=7π√2/6*√3/2=7π√6/12 cm/s;

Sensul vitezei poate fi exprimat in felul urmator: V=vxi + vyj ; (6)

Din (6) => V1=(7π√3/12)i + (7π√3/12)j ;

3. Pentru a afla modulul acceleratiei calculam componentele ei ax si ay

ax=dvx/dt => ax=(7π/6)cos(πt/3)*π/3=(7π2/18)*cos(πt/3) cm/s2;

Deoarece Vx=Vy => ax=ay ;(7)

Din (7) => ax1=ay1= 7π2/18*1/2=7π2/36 cm/s2;

a=√ax2+ay2=(7π2√2/18)cos(πt/3) cm/s2;

=> a1=7π2√2/18*1/2=7π2√2/36 cm/s2;

Sensul acceleratiei poate fi exprimat in felul urmator: a=axi + ayj ; (8)

Din (8) => a1=(7π2/36)i + (7π2/36)j ;

4. aτ=d2s/dt2*τ cm/s2;

Din urmatoarele formule: v=ds/dt*τ , v=vτ*τ constatam ca acceleratia tangentiala poate fi

scrisa in felul urmator : aτ=dvτ/dt*τ cm/s2.

Tinand cont de faptul ca in cazul dat vτ=v => aτ=dv/dt*τ=(7π√2/6)*cos(πt/3)*π/3 cm/s2=>

aτ=(7π2√2/18)cos(πt/3)*τ cm/s2; (9)

Din (9) => a1τ=7π2√2/18*1/2=7π2√2/36 cm/s2

5. an=v2/ρ*n cm/s2;

Tinand cont de faptul ca acceleratia normala poate fi exprimata din urmatoarea formula:

a=an + aτ => an=√a2 – (aτ)2 => a1n=√a12 – (a1τ)2=√49π4/648 - 49π4/648=0 cm/s2.

  1. ρ=v2/an ;

Din relatia de mai sus obtinem ρ1=v12/a1n.

Stiindul pe a1n obtinem ρ1=(294π2/144)/0=∞